

2

From millions to billions

Global automakers are spending well over $1 billion per year on software research and development,
representing $1,000-$3,000 per vehicle sold. But what are they getting for their money?

Due to significant disruption not only to consumer
automotive competitive markets, but also to the extensive
supporting supply chain, OEMs now dedicate significant
resources to software research and development to remain
competitive. OEMs are spending their software R&D budgets
on a combination of new features and control over their
vehicle systems and features.

With this level of spend, the build or buy decision for software at OEMs needs to be based on a clear
understanding of the value each type of software brings to the OEM’s ultimate goal of delivering high
quality services to their customers.

These “Vehicle OS” initiatives cover all areas of a software stack – from chip-specific firmware, through
the actual device operating system (e.g., Linux, Android, QNX), and up through the abstraction layers,
middleware, and application environments, and into the application layers both on and off the vehicle.
Every OEM will need to make its own calculations, but for many, different layers of software provide
drastically different returns on investment.

Middleware investment in particular presents a conundrum for OEMs – having a great strategy to
abstract hardware from applications is critical to deploying a flexible software strategy and working
towards a software-defined vehicle. For some OEMs, that strategy may involve authoring a high percentage
of their middleware. But as the software costs continue to escalate, many manufacturers may find that
partnering or buying is the best approach for their abstraction layers – particularly middleware.

Table 1 - Examples of OEM software R&D, staffing, and strategic initiatives

OEM 2021 Software R&D
Estimate1

Approximate Per
Vehicle Cost

Estimated Software
Staffing Commitment

BMW $1-$1.5 billion $3,000 3,000-5,000

Ford $1.5-1.75 billion $1,500 7,000+ 2

GM $1.5-$1.75 billion $1,000 3,000 new between 2020 and 20213

Mercedes-Benz $1.3-$1.7 billion $3,000 4,000-7,000

Toyota $3.5-$4 billion $1,100 18,000 across Toyota and all subsidiaries4

Volkswagen $3-$3.5 billion $1,750 10,000+ by 20255

$1.5-2 Billion – typical
annual software R&D spend

at global OEMs

“It is a [dead end] for OEMs to each develop their own operating system.”
- Frank Weber, BMW Board Member

3

High-performance computers as feature opportunity and R&D cost challenge

The emergence of “High-Performance Computers” (HPCs), such as the Continental ICAS used by
Volkswagen in its ID range, presents both an opportunity and a challenge for OEMs. These high-powered
vehicle components, which allow systems with varying criticality and functionality to operate on the same
hardware, are expected to be widely used in digital cockpits, autonomous driving, and core vehicle platform
computing systems. The fundamental value proposition of this high-performance computing environment
is the ability to dynamically shift computing workloads between the vehicle and the cloud, allowing more
advanced computation “at the edge” (in this case, in the car). Developing a solution architecture that allows
for this type of device edge computing enables more responsive services while reducing networking and
cloud computing costs.

However, software platforms powering edge computation require significant investment to develop.
SBD Automotive estimates that an OEM would need to invest between $65M and $115M over ten years
to develop and maintain the most fundamental, non-differentiating cloud & in-vehicle software building
blocks for vehicle data and algorithm management – and this is only a small fraction of the overall software
investment required.

Translating these costs across the extensive software-defined vehicle technology stack quickly unveils their
hidden development risks of software-defined vehicles: over-investment in enablers that do not directly
contribute to consumer differentiation leads to higher costs, longer lead times for development, worse
long-term sustainability, and poorer cybersecurity performance. Overzealous ambition to own & develop
in-house software platforms injects unnecessary cost in a vehicle’s software bill of materials without
creating any value in many cases.

The scalability challenge

The biggest and most ambitious automakers clearly see a future where they own and develop most of the
vehicle’s software stack in-house, achieving scalability by developing and sharing this platform through
technology-sharing alliances across both internal brands as well as OEM partners.

Figure 1 - Toyota technology sharing and capital alliance

4

For example, Volkswagen’s CEO, Herbert Deiss,
recently noted that their ambition to “own” (i.e.,
develop, integrate, and deploy) around 60% of the
software in their vehicles themselves, representing a
sea change from today’s vehicles where a significant
majority of the software is written by suppliers.

To successfully lead or even compete in the world
of software-defined vehicles, OEMs making such
investments must have a strategic, objectives-
based framework for end-to-end architecture
of the vehicle’s software stack. Throwing money
and people at the problem won’t work without
direction; using these resources to follow a clear
roadmap and build differentiating products and
experiences will.

For most OEMs, cost-efficient execution on a software-defined vehicle roadmap will generally require some
partner-provided solutions, open-source software, or a combination of the two – particularly for enabling
(rather than value-creating) software. Relatively complex software components such as these require
only minimal customization for a specific OEM’s platform, making it economically inefficient to build the
entire stack in-house. In addition, many 3rd party developers seek economies of scale to maximize their
addressable market while minimizing investment required to customize solutions for OEMs. Developing
custom in-house components from scratch that provide the same functionality as scalable vendor solutions
can add anywhere from two to four years to the vehicle platform development roadmap while much of the
time resulting in a worse product.

Enabling middleware to decouple
software from hardware

Historically, automakers and their suppliers developed
software for the unique hardware and device OS
environment. This approach has created a complex
legacy technology problem, making evolution
(rather than revolution) to software-defined vehicles
extraordinarily difficult. While this type of software
can improve resource efficiency, it also “couples” the
software with its specific deployment architecture,
making it difficult to update, integrate, and/or scale to
additional vehicle platforms or systems.

Middleware is the most important tool for decoupling
this software and creating a platform for software that
is updatable, scalable, and portable.

Middleware derives its name from its function: to
stand in the “middle” between different components
or environments. In this case, middleware creates
a boundary between the hardware-specific runtime as well as device operating system on a specific
component, and the application software deployed to run on the system.

Figure 2 & 3

Figure 4

5

Connected middleware: an industry reference

Effectively developing and supporting a software-defined vehicle platform requires a middleware strategy.
Because middleware is not a single component but rather a set of software components that provide
comprehensive sandboxing and abstraction (that is part of all the runtimes listed above), automakers must
take a full-vehicle systems view and derive a software architecture that captures each domain (such as
autonomous and digital cockpit) and the associated middleware for each.

As an example of an automotive-specific, connected middleware, BlackBerry and Amazon Web Services
(AWS) co-developed IVY to support OEMs to meet these common needs. The application of this platform
is outlined below in Figure 5. This figure provides one example of one middleware product (IVY) working
together with AUTOSAR and Android middleware components. It offers an example of how OEMs can
choose their middleware strategy to include a selection of open-source, standardized, or bought-in
components – “owning” the software inventory to the vehicle need not equate to developing everything
in-house.

In this case, IVY’s “synthetic sensors” – essentially small analytics applications that work on data or train an
algorithm – operate using standardized vehicle sensor interfaces on the vehicle. This architectural pattern
provides a homogenous abstraction layer on top of which OEMs, 3rd party developers, suppliers, and other
authorized stakeholders can build applications without concern for engineering for hardware or vehicle
platform-specific concerns.

By combining common industry middleware solutions such as these, OEMs can achieve a scalable
integration showcasing the flexibility of software-defined vehicles.

Figure 5 - BlackBerry IVY deployed with AUTOSAR Adaptive and Android Automotive

In practice, middleware bears the burden of understanding the device-specific runtime while translating
the deployment-specific nuances to standardized interfaces for higher-level software. This can take the
form of APIs (like Toyota’s Arene platform), SDKs (like BlackBerry’s IVY solution), and/or entire application
platforms (like the Android Runtime, AUTOSAR Adaptive Runtime for Applications, and IVY). These full-
stack runtimes are engineered to solve specific problems in the vehicle’s software architecture. AUTOSAR
Adaptive’s runtime is usually used to craft domain specific solutions; Android runtime is generally used to
host applications (.apks) and provide a rich infotainment UX; and IVY’s runtime supports running analytics
workloads safely on the car.

6

Balancing cost and risk in vehicle OS development – modelling build vs buy

While the industry faces a spree of software in-sourcing (where OEMs develop vehicle software themselves
instead of outsourcing to a supplier), many automakers’ immediate reaction to the design requirements for
these components may be to design and develop it themselves. After all, the differentiating software that
runs on top of these platforms – the primary target of OEM software development – is only as capable as the
underlying APIs and services that enable them.

The actual decision is not so simple, however, and requires long-term view of what the OEM will need from
its middleware componentry. The biggest return on software investment will be in the software that directly
enables a new experience, feature, or service that adds value to the customer or the business. Middleware
doesn’t directly do any this, in spite of its key role in the infrastructure.

Software and platform vendors such as HARMAN (Ignite), BlackBerry (IVY), Continental (CAEdge), Baidu
(Apollo) and industry consortia such as AUTOSAR, GENIVI, and Automotive Grade Linux (AGL), see the
opportunity that middleware can provide crucial vehicle OS and middleware infrastructure at a fraction of the
cost of new development while also significantly shortening the time-to-market for an OEM’s
software-defined vehicle roadmap.

In working with our automaker and supply chain partners, we have developed a shortlist of the most important
elements to consider when deciding whether to build or buy core Vehicle OS enablers such as middleware.

No two automakers are the same, and the strategy for building and integrating a middleware stack should be
derived based on the corporate strategy and long-term needs of the business. To help quantify some of the
investment required to build a solution from scratch, SBD has developed a model for estimating the total cost
of ownership for a middleware stack designed specifically for vehicle-edge processing, data management, and
application/edge software lifecycle management.

The Buy Option: Sourcing vehicle OS infrastructure from software specialists

The upside: The downside:

•	 Significantly lower non-recurring expenses (NRE) and long-term
maintenance costs

•	 Stronger security from contractual and/or multi-OEM testing
•	 Access to domain-specific subject matter experts
•	 Scalability of software applications that run on a common

multi-OEM platform, resulting in lower cost to add new
functions & services from 3rd parties

•	 Instant ecosystem access for tools and partners engineered as
part of the provider’s middleware stack

•	 Access to pre-existing data services, training algorithms, and
(potentially) datasets that shortcut many difficult pain points in
autonomous and connected vehicle use cases

•	 Proprietary software in vehicle stack creates long-term supplier
risk

•	 No direct control over product roadmap if new functionality is
required

•	 Risk of lock-in on “worse” option if lower cost or open-source
alternatives emerge, resulting in problems with legacy software

•	 Potential for unfavorable contracts which preclude the OEM
from taking full advantage of the middleware stack without
undue expenditure (i.e., usage-based fees)

The Build Option: Designing, developing, integrating, and maintaining an in-house solution

The upside: The downside:

•	 Direct control over how and which data is exposed
•	 Direct control over what security controls are in place and how

they are managed
•	 Direct control over the breadth and depth of the supporting

toolchain (i.e. SDKs, plug-ins, libraries, Wikis, etc.)
•	 No supplier risk as all software is owned by the OEM
•	 Curated partner ecosystem specific to the OEM’s desired brand

identity and offering

•	 Significant up-front non-recurring expenses (NRE)
•	 Long-term time to market (2+ years)
•	 Significant annual expenses associated with further develop-

ment, maintenance, and re-engineering of the middleware stack
•	 Potentially significant re-engineering expenses for moderniza-

tion activities
•	 Potential for higher cybersecurity risk from lack of testing and/

or robustness
•	 Ground-up ecosystem-building consumes significant time &

resources with no guarantee of success

Table 2 & 3

7

Figure 6 & 7

Distribution of expenses

Internal development and operation of:
Edge-to-cloud middleware
Vehicle data & analytics middleware

8

$115 million is a massive sum for a software project that represents only a small portion of the
overall software investment required for software-defined vehicles particularly when considering
the middleware software isn’t directly providing a monetized feature or service. An OEM may justify
such an expense under the pretense that it enables a broader data ecosystem, and the largest
volume OEMs are the most likely to undertake such a development effort, although advantages
also exist for these OEMs to work with industry partners. But OEMs of all volumes, all margins, and
varying brand values should consider a partner-driven approach to mitigate these new development
expenses while leapfrogging those competitors who are developing a similar capability in-house
over a much longer timespan.

Once launched, OEMs unlock important use cases through their production fleets.

Use Case: Real-time deployment of a new analysis algorithm for global fleets

Value Proposition: The ability to support new data-driven business needs or commercial opportunities with
little-to-no engineering effort required while reducing the cost to do so by performing data
analysis in the vehicle (vs. in the cloud)

Example: Deploying a new data collection and analysis algorithm to all vehicles enables compressive
battery analytics to monitor fleet performance based on a broader set of real-time data
(e.g., battery performance, environmental conditions, and driver/vehicle behavior)

Use Case: Training machine learning models supporting various vehicle components and
domains, including digital cockpit, powertrain, autonomous, and body/chassis

Value Proposition: Continuously improving product quality and performance, resulting in a more competitive
product at lower costs while fostering customer loyalty from product enhancements

Example: Training a machine learning model for optimizing battery range performance based on the
characteristics of unique driver profiles

Use Case: Safe, secure distribution of vehicle data to multiple offboard systems, including
OEM-managed as well as 3rd-party managed (such as data marketplaces or service
provider partners)

Value Proposition: Vehicle-specific definition of what data is sent where (enforced on the vehicle runtime itself
rather than the cloud), reducing data transmission costs, cloud computing costs, and
cloud-based security risks

Example: Configuring an algorithm which derives four to five key data points relevant a specific insurer
and sending them to the driver’s selected insurer

Use Case: Providing an ecosystem on which 3rd parties can develop algorithms or small
“applications” that run on any vehicle which implements the target middleware/
edge platform

Automaker Value
Proposition:

Access to a pre-developed library of value-add algorithms, partner services, and machine
learning models that eliminates the cost to develop the same in-house services or bespoke
partner integrations

Developer Value
Proposition:

Access to scale and volume with much lower overhead because of non-platform-specific
integrations, resulting in a much larger addressable market for their content or service

Example: A weather company develops a data collection and analysis algorithm which aggregates
vehicle-specific sensor data with model data to provide a driver with hyper-localized
forecasts and driving conditions

Table 3, 4, 5 & 6

9

Bridging objectives with middleware design

The question is not if OEMs need middleware to build a software-defined vehicle, but rather how
OEMs can integrate and extend it to provide the required enablers most efficiently. The automakers
that successfully launch a software-defined vehicle platform with extensible, capable middleware
will unlock critical value-adds:

Industry stakeholders must make strategic decisions now on what their business will look like
5 or even 10 years in the future. These choices will have profound impacts on the ability to both
execute on software roadmaps and react to competitive disruption. Understanding how to integrate
the right middleware for its organization is one of the key decisions that will define what features,
functionality, and added revenue streams an OEM can deploy for the next 10 years. Knowing
that they need not build everything internally to have control over their software future is the
foundation to OEMs making the right choice for their size, capability, and budget.

References

1 SBD Automotive research, aggregating public financial reporting, news reports, and annual volumes
2 https://techstory.in/ford-offers-buyout-for-select-skill-teams-plans-to-attract-software-employees/
3 https://media.gm.com/media/us/en/gm/home.detail.html/content/Pages/news/us/en/2020/nov/1109-tech-
jobs.html
4 https://global.toyota/en/newsroom/corporate/35891478.html
5 https://www.volkswagenag.com/en/news/fleet-customer/2021/01/transformers.html

About SBD Automotive

SBD Automotive is a global consultancy firm specializing in automotive technologies. For over 20
years, our independent research, insight, and consultancy has been helping vehicle manufacturers
and their partners to create smarter, more secure, better connected, and increasingly autonomous
cars. With a reputation for robust data and expert advice, as well as an ability to attract and retain
the industry’s most talented specialists, SBD Automotive operates a network of local offices in key
automotive hubs, including the UK, Japan, North America, Germany, China, and India.

If you would like to learn more, please visit www.sbdautomotive.com

Edge processing of data, resulting in smarter in-vehicle
capabilities – especially in the ADAS domain – and
significantly optimized over-the-air data costs

Faster product development cycles due to enhanced
testing and simulation capabilities enabled by abstracted
hardware and sensors

Lower-cost, diversified hardware and semiconductor
supply chains from hardware-agnostic applications built to
run on middleware, not hardware

Smarter, more personalized in-vehicle experiences from
integrated edge applications providing real-time and
predictive services

Table 7

